Generalized Additive Models

Trevor Hastie
and
Robert Tibshirans

Technical Report No. 2
September 1984

Laboratory for

Computational
Statistics

Department of Statistics
Stanford University




Generalized Additive Models

Trevor Hastie,
and
Robert Tibshsrans
both of
Department of Statistics

Stanford University
and

% Computation Group

Stanford Linear Accelerator Center

Abstract

Likelihood based regresssion models, such as the normal linear regression model and the linear logistic
model, assume a linear {or some other parametric) form for the covariate effects. We introduce the
Local Scoring procedure which replaces the linear form ¥ X;B; by asum of smooth functions 2 s5(X;5).
The s;(-)’s are unspecified functions that are estimated using scatterplot smoothers. The technique is
applicable to any likelihood-based regression model: the class of Generalized Linear Models contains
many of these. In this class the Local Scoring procedure replaces the linear predictor = 3 X;B; by
the additive predictor ) s;(X;); hence the name Generalized Additive Models. Local Scoring can also
be applied to non-standard models like Cox’s proportional hazards model for survival data.

In a number of real data examples, the Local Scoring procedure proves to be useful in uncovering
non-linear covariate effects. It has the advantage of being completely automatic, i.e no “detective work”
is needed on the part of the statistician.

In a further generalization, the technique is modified to estimate the form of the link function for
generalized linear models.

The Local Scoring procedure is shown to be asymptotically equivalent to Local Likelihood esti-
mation, another technique for estimating smooth covariate functions. They are seen to produce very
similar results with real data, with Local Scoring being considerably faster.

As a theoretical underpinning, we view Local Scoring and Local Likelihood as empirical maximizers
of the ezpected log-likelihood, and this makes clear their connection to standard maximum likelihood
" estimation.

A method for estimating the “degrees of freedom” of the procedures is also given.

- * This work was suppbrted by the Department of Energy under contracts DE-AC03-76SF and DE-AT03-81-
ER10843, and by the Office of Naval Research under contract ONR N00014-81-K-0340, and by the U.S. Army
Research Office under contract DAAG29-82-K-0056.



1. Introduction.

Likelihood-based regression models are important tools in data analysis. A typical scenario
goes as follows. A likelihood is assumed for a response variable Y, and the mean or some
other parameter is modeled as a linear function of a set of covariates X1,X2,...Xp. The
parameters of the linear function are then estimated by maximum likelihood. Examples of
this are the normal linear regression model, the logistic regression model for binary data, and
Cox’s proportional hazards model for survival data. These models all assume a linear (or some

parametric) form for the covariates effects.

In the linear regression problem, there has been a trend in the past few years to move
away from linear functions and model the dependence of Y on X, X3, .. .Xp in a more non-
parametric fashion. For a single covariate, such a model would be Y = s(X)+error where s(X)
is a unspecified smooth function. This function can be estimated by any so-called scatterplot

- smoother, for example a running mean, running median, running least squares line, kernel
estimate, or a spline. The resulting smooth estimate is useful both as a descriptive tool and as
a predictive model. For the p covariates X;, X5 ... Xy, one can use a k-dimensional scatterplot
smoother to estimate s(X), or else assume a less general model such as s(X) = 2% 8;(X;) and
estimate it in a forward stepwise manner.

In this paper, we propose a technique for estimating smooth covariate functions in any
likelihood-based regression model. We call it the Local Scoring algorithm. This procedure
uses scatterplot smoothers to generalize the usual Fisher Scoring procedure for computing
maximum likelihood estimates. For example, the linear logistic model for binary data specifies
logp/(1—p) = Bo+ B1X1+ -+ BX,. This can be generalized to logp/(1-p) = 37 s;(X;),
and the Local Scoring procedure provides non-parametric, smooth estimates of the s;(:)’s.

The Gaussian and logistic models are members of the class of generalized linear models
(GLM’s) (Nelder and Wedderburn, 1972). This comprehensive class restricts ¥ to be in the
exponential family; the statistical package GLIM (Generalized Linear Interactive Modeling)
performs estimation and diagnostic checking of these models. The local scoring procedure
generalizes GLM’s by replacing the linear predictor 5 = > X;pB; by an additive predictor of
the form n = 3~ s;(X;). The third example mentioned earlier, the proportional hazards model,
is not in the exponential family, and the likelihood it uses is not in fact a true likelihood at all.
Nevertheless, we still think of it as a “likelthood-based” regression model, and the local scoring
procedure can be applied. The usual form for the relative risk, exp()_ X;B;) is replaced by
the more general form exp(}_ s;(X;)).

The local scoring procedure is asymptotically equivalent to another method for estimating
smooth covariate functions, Local Likelihood estimation (Tibshirani, 1982, Hastie, 1983a, and

- Tibshirani, 1984). In this paper we compare the two techniques in some examples and find

that the estimated functions are very similar. The advantage of the local scoring method is
that it is considerably faster.



As a further generalization, the local scoring procedure can be extended to provide non-
parametric estimation of the link function. This facilitates, for example, estimation of the
model f(p) = 37 s;(X;) for binary data. It also provides a check of two of the assumptions
inherent in linear logistic modeling: the linear form for the covariates and the logit link.
The complete algorithm, with covariate and link function estimation, can be viewed as a
generalization of Friedman and Owen’s PACE model to non-Gaussian data (Friedman and
Owen, 1984).

This paper is non-technical for the most part, with an emphasis on the techniques and
their illustration through examples. In Section 2, we review the linear regression model and its
generalization (additive models built up from covariate smooths). Section 3 reviews generalized
linear models. In Section 4, we link smoothing and generalized linear models to produce a more
general model. The two techniques for estimation are introduced and illustrated.

In Section 5, we present a unified framework in which to view the estimation procedures.
Section 6 contains examples of the procedures, including the logistic model and Cox’s model for
censored data. In Section 7 we discuss multiple covariate models and backfitting procedures.

Section 8 compares the Local Scoring and Local Likelihood procedures, Section 9 deals
with their asymptotic properties, and in Section 10 we discuss inference for the models. In
Section 11 we analyze the air pollution data which Breiman and Friedman (1982) analyzed
using their ACE model.

Section 12 details estimation of the link function as well the the covariate functions, and
shows the connection to the PACE model. Finally, in Section 13, we discuss the relationship
of Generalized Additive Models to other models suggested in the literature.

2. The Linear Regression Model and its Smooth Extension.

Our discussion will center on a response random variable Y, and a set of predictor random
variables X;, X3,-+- X,. A set of n independent realizations of these random variables will be
denoted by (y1,Z11,...21p), ... (Yn, Zn1 - .. Tnp). When working with a single predictor (p = 1),
we’ll denote it by X and its realizations by z;,z3,...z,.

A regression procedure can be viewed as a method for estimating E(Y | X1, Xa,...X,).

The standard linear regression model assumes a simple form for this conditional expectation:
E(Yle,Xz,...Xp)=ﬂo+X1,31+...Xpﬁp. (1)

Given a sample, estimates of g, 81, ... 0, are usually obtained by least squares.

The additive smooth model generalizes the linear regression model. In place of (1), we

assume

E(Y |X1,X2...XP)=80+ZSJ'(XJ') (2)
=1



where the s;(-)’s are smooth functions standardized so that Es;(X;) = 0. These functions are
estimated one at a time, in a forward stepwise manner. Estimation of each 8;(-) is achieved
through a scatterplot smoother.

2.1. Scatterplot Smoothers.

Let’s look first at- the case of a single predictor. Our model is
E(Y | X) = s(X) (3)

(If there is only one smooth function, we suppress the constant term sy and absorb it into the
function). To estimate s(z) from data, we can use any reasonable estimate of E Y |X =2).

One class of estimates are the local average estimates:
8(zi) = Avejen;[y;] (4)

where “Ave” represents some averaging operator like the mean and N; is a neighbourhood of z;
(a set of indices of points whose z values are close to z;). The only type of neighbourhoods we’ll
consider in this paper are symmetric nearest neighbourhoods. Associated with a neighbourhood
is the span or window size w; this is the proportion of the total points contained in each
neighbourhood. Assuming that the data points are sorted by increasing z value, a span w

symmetric neighbourhood at z; will contain [wn] points; half to the left of z; and half to the
right. A formal definition is:

N; = {max(i — [ir—llz_—l,l), vt — 1,4, 41, . min(f + Lu%—l,n)} (5)

We see that the neighbourhoods are truncated near the end points if Jw—"ztl points are not

available. The span w controls the smoothness of the resulting estimate, and must be chosen
in some way from the data.-

If Ave stands for arithmetic mean, then 3(+) is the running mean, the simplest possible
scatterplot smoother. The running mean is not a satisfactory smoother because it creates
large biasses at the endpoints and doesn’t reproduce straight lines (i.e. if the data lie exactly
along a straight line, the smooth of the data will not be a straight line). A slight refinement of

the running average, the running lines smoother alleviates these problems. The running lines
estimate is defined by

8(2:) = Boi + Braz: (6)
where Bo; and ,éu are the least squares estimates for the data points in N;:
Z,-ezv,-(l‘j - Z)y;
EjeN;(zj - ;)? ’ (7)

Boi = 9 — Priz:

B =




and Z; = %EjeN.' Zj, Yi = %EjEN.' Y5

The running lines smoother is the most obvious generalization of the least squares line.
When every neighbourhood contains 100% of the data points, the smooth agrees exactly with
the least squares line. Although very simple in nature, the running lines smoother produces
reasonable results and has the advantage that the estimate in a neighbourhood can be found
by updating the estimate of the previous neighbourhood. As a result, a running lines smoother
can be implemented in an O(n) algorithm, a fact that will become important when we use it
as a primitive in other procedures. For the rest of this paper, a “ Smooth ()" operation will
refer to a running lines smoother for some fixed span.

It is important to note, however, that the running lines smooth plays no special role in the
algorithms that are described in this paper. Other estimates of E (Y | X) could be used, such
as a kernel or spline smoother. Except for the increased computational cost, these smoothers
could be expected to work as well or better than the running lines smooth.

Finally, using Smooth as a building block, the full model (2) can be estimated in a
forward stepwise manner. This is discussed in Section 7.

2.2. Span Selection and the Bias-Variance Tradeoff.

The running lines smoother requires a choice of span size w. Let’s look at the extreme choices
first. When w =0, 3(z;) is just y;. This is not a good estimate because it has a high variance
and is not smooth. If w = 2.0 (that is every neighbourhood contains all the data points), *
3(+) is the global least squares regression line. This estimate is too smooth and will not pick
up curvature in the underlying function, i.e. will be biassed. Hence the span size should be
chosen between 0 and 2 to trade-off the bias and variability of the estimate.

A data-based criterion can be derived for this purpose if we consider the estimates of

E(Y | X) as empirical minimizers of the (integrated) prediction squared error
PSE = E(Y - s(X))?
or equivalently the integrated mean squared error
MSE= E(E(Y | X) - (X))

Let 3;°(z;) be the running lines smooth of span w, at z;, having removed (z;,y;) from the
sample. Then the cross-validation sum of squares is defined by CVSS(w) = (1/n) X T{y -
$§3°(%:))%. One can show that E (CVSS(w)) ~ PSE, using the fact that 8} (z;) is independent
of y;. Thus it is reasonable to choose the span w that produces the smallest value of CV S S(w).
____This criterion effectively weighs bias and variance based on the sample. Cross-validation for
span selection is discussed in Friedman and Stuetzle (1982). Note that if we used the observed

* A neighbourhood with span 1.0 would only contain half the data at the endpoints



residual error RSS = ) T(yi — 8w(2:))? to choose w, (8w(zs) being the fit at z; with span w)

we would get w = 0 and hence §(z;) = y;. Not surprisingly, E(RSS) # PSE. The point is

that by choosing the span to minimize an estimate of ezpected squared error, we get a sensible
estimate.

3. A Review of Generalized Linear Models (GLMs).

Generalized linear models (Nelder and Wedderburn, 1972) consist of a random component, a
systematic component, and a link function, linking the two components. The response Y is

assumed to have exponential family density

fr(y; 0; ¢) = exp{[y6 — b(8)]/a(8) + c(y,$)} (8)

where 0 is the natural parameter, and ¢ is the scale parameter. This is the random component
of the model. We also assume that the expectation of Y, denoted by ‘i, is related to the set
of covariates Xi,X3...X, by g(u) = n where n = 8y + P1X1...BpXp. n is the systematic
component and g is the link function. Note that the mean u is related to the natural parameter
f by p = ¥'(6); also, the most commonly used link for a given f is called the canonical link,
for which n = 8. It is customary, however, to define the model in terms of p and n = g(p) and
thus § does not play a role. Hence, when convenient we’ll write fy (v,6,9) as fr(y, 1, ).

Estimation of 4 doesn’t involve the scale parameter ¢, so for simplicity this will be assumed
known.

Given specific choices for the random and systematic components, a link function, and
a set of n observations, the maximum likelihood estimate of ﬁ = (,éo,,él ﬂ;,) can be found
by a Fisher scoring procedure. GLIM uses an equivalent algorithm called adjusted dependent
variable regression . Given 7°, (a current estimate of the linear predictor), with corresponding
fitted value %, we form the “adjusted dependent variable”

L=7%+(y- ﬂo)(Z—Z)o (9)

Define weights W© by
-1 ,dn :
WO 1 _ 2V0
W) = (5 (10)

where V0 is the variance of Y at p = {i° The algorithm proceeds by regressing 2% on 1, zy, . . Ty
with weights W0 to obtain an estimate ﬁ Using ﬁ, a new ji and 1} are computed. A new z is
computed and the process is repeated, until the changes in ﬁ are sufficiently small. Nelder and
- Wedderburn show that the adjusted dependent variable algorithm is equivalent to the Fisher
Scoring procedure. It is attractive because no special optimization software is required, just a
subroutine that computes weighted least squares estimates.



Deviations between the data and the estimated model are measured using the Deviance,
defined by

Dev(y, it) = 2[l(y) - I(i)] (11)

where I(p) = 3" log fy(yi, ui,¢) is the log likelihood. In the case of Gaussian errors the
deviance is identical to residual sum of squares (RSS) and in the more general case it enjoys
the Pythagorean properties of the RSS.

A comprehensive description of generalized linear models is given by McCullagh and
Nelder (1983).

4. Smooth Extensions of Generalized Linear Models.

4.1. Specification of the Model.

The linear predictor = o+ X35 .. . XpPyp specifies that X7, X3,... X, act in a linear fashion.
A more general model is

n=s0+)_si(X;) | (12)
1

where s;1(-) ... sp() are smooth functions. These functions will not be given a parametric form
but instead will be estimated in a non-parametric fashion.

4.2. Estimation of the model — Local Scoring.

We require an estimate of the s;(-)’s in (12). For the linear model n = 8y + X161 + .. - XpBp,
the estimates were found by repeatedly regressing the adjusted dependent variable z on
1, X1,...X,. Since smoothing generalizes linear regression, in the smooth model 5 = s(X), we
can estimate s(-) by smoothing the adjusting dependent variable on X. We call this procedure
Local Scoring because the Fisher scoring update is computed using a local estimate of the
score. This sensible idea can be justified on firm grounds (see Section 5); we display in Figure
1 (Section 6) the results of local scoring smoothing, exp(§(z))/(1 + exp(3(z))), along with the
usual linear estimate, exp(& + fz)/(1 + exp(& + fBz)), for some binary response data. This is
one of the smooths from the analysis of Haberman’s breast cancer data, discussed in detail in
Sections 6 and 7.

The span at each iteration is found by cross-validation, as described in Section 2. Recall
that E(CVSS(w)) = PSE for a scatterplot smoother; the derivation of this rests on the fact
that the fitted value for y; does not involve y;, and is thus independent of y;. In this setting, the
response is the adjusted dependent variable z; which is a function of y;. The cross-validated
fit for 2; is a function of z;, j # . Since z; is a function of y; from previous iterations, z;
is not independent of its cross-validated fit. However, if k, is the number of points in the
neighbourhood, then one can show that under reasonable conditions the dependence is only

O(1/ky).



To obtain smoother estimates, we use a slight modification of this criterion. We choose a
larger span than the cross-validatory choice if it produces less than a 1% increase in CV S S(w).

For the full model (12) , the smooths can be estimated one at a time in an iterative
fashion. This idea is discussed in detail in Section 7.

4.3. Estimation of the model — Local Likelihood Estimation.

Tibshirani (1982), Hastie (1983a) and Tibshirani (1984) discuss another method for estimating
smooth covariate functions, called Local Likelihood estimation. For a single covariate, the usual
(linear) procedure fits a line across the entire range of X ,1.e. n = Bo+ A1 X. To estimate the
model n = s(X), the local likelihood procedure generalizes this by assuming that locally s(z)
is linear, and fits a line in a neighbourhood around each X value. In the exponential family
with canonical link, the local likelihood estimate of s(z;) is defined as

§(z:) = Boi + Bz (13)
where Bo,- and ﬁAu maximize the local likelihood:

log L; = Z{[y.v ij — b(0:5)]/a(¢) + C(yJ,¢)} (14)

JEN;

and 0;; = Boi + f1:z;. The local likelihood smooth applied to the Haberman data is also shown
in Figure 1, along with the local scoring smooth. They are very similar, a fact that seems to

be a general phenomenen. We discuss the relationship between the two procedures in Section
8.

' LBcal scoring and local likelihood estimation provide two methods for estimating the
covariate functions of a generalized linear model. In the next section, we introduce a theoretical
framework in which to view both of these techniques. Besides providing a justification for the
methods, this framework also produces a general form of local scoring that can be used in any
likelihood-based regression model.

5. Justification of the Smoothing Procedures.

5.1. The Expected Log-likelihood Criterion.

In Section 2 we discussed scatterplot smoothers as estimates of E(Y | X= - z). There we saw
that by choosing the span to minimize an estimate of ezpected squared error, (as opposed to
residual sum of squares) we obtained a sensible estimate. In this section, we will use this idea

~in alikelihood setting, basing the estimation procedures on ezpected log likelihood.

Consider a likelihood based regression model with one covariate. We assume that the data
pairs (21,41),...(Zn,yn) are independent realizations of random variables X and Y. Assume



also that given X = z, Y has density
Y|X =z ~h(y,n) (15)

Since 7 is a function of z, we will sometimes write 17(:1:) for emphasis. Denote the corresponding
log-likelihood for a single observation by I(n,Y), or I for short. Now to estimate 7(-), we could
simply maximize 2T (=), v) over n(z1),n(z3),.. .n(zn). This is unsatisfactory, however,
because it doesn’t force the estimate to be smooth. In the logistic model, for example, it
produces j(z;) = 400 if y; = 1 and ~oo if y; = 0, and the estimated probabilities are just the
observed y;’s. Looking back at the scatterplot smoothing discussion, we see that the remedy
in the random variable case is to choose 71(-) to maximize the ezpected log-likelihood:

A() = max™![ E(I(n(X),Y))] (16)

the expectation being over the joint distribution of X and Y. Clearly, this is the direct
generalization of mean squared error minimization in the Gaussian case. Mean-squared error
generalizes to (expected) Kullback-Leibler distance in non-Gaussian models, and maximization
of the expected log-likelihood is equivalent to minimization of the Kullback-Leibler distance.

The use of expected log likelihood has also been suggested by Brillinger (1979) and Owen
(1983, unpublished manuscript). Note that for each X = z, this theoretical criterion is max-
imized by the true value n(z); this is a key fact in deriving the asymptotic properties of
maximum likelihood estimates. In what follows, we show that standard maximum likelihood
estimation for generalized linear models, local scoring, and local likelihood estimation can all

be viewed as methods for empirically maximizing the expected log likelihood.

5.2. Derivation of the Estimation Techniques via Expected Log-Likelihood.

One way to use (16) for estimation of (z) would be to assume a simple form for n{z), like
n(z) = fo + Prz. The expectation in (16) could then be replaced by its sample analogue,
and the resultant expression maximized over 8y and 8. This is nothing more than standard
maximum likelihood estimation.

Now suppose (as is the point of this paper) that we don’t want to assume a parametric
form for n(z). Differentiating (16) with respect to , we get

dl
E(EZ |T)4(z) =0 (17)
Given some initial estimate 1°(z), a first order Taylor series expansion gives the improved
estimate
E (50 |2)
n'(z) = n’(z) - —(dlzr-l—) (18)



or
dI

1 0 dn?
7@ = B (ne) - T (19)
E( o 12)
This provides a recipe for estimating 7(-) in practice. Starting with some initial estimate
n°(z), a new estimate is obtained using formula (19}, replacing the conditional expectations
by scatterplot smooths. The data algorithm analogue is thus

4l
dn®

1 0
1n°{z) = Smooth {n~°(z) —
(=) (=) Smooth[a%%l,-

(20)

Since the variance of each of the terms in the brackets is approximately &« E (-—7) the smooth

should use weights Smooth( ) ! for efficient estimation. The data algorithm consists of
repeated iterations of (20), until convergence.

In the generalized linear model case, we can simplify (19) before replacing E(- |z) by
Smooth. We compute é% = (y—pVv- ld", g:z = (y - p)a—[ ‘ld“] (E)ZV -1 and
(dn | z) = (d“)zV 1. Hence the update simplifies to

n'(z) = E |n°z) + (¥ - u°) RE (21)

The data analogue is
d
n'(e) = Smooth(’(z) + (y ~ u°) 7] (22)

with weights (di:g)?V"l. This is exactly a smooth of the adjusted dependent variable, suggested
on intuitive grounds in Section 4.

Note that we chose the form (19) instead of (18). In the case of distributions, they are
the same because conditional expectation is a projection operator. Most smooths are not
projections and thus the two forms are not equivalent in the data case. We chose (19) because
in the Gaussian case it simplifies to /(z) = Smooth (y) without any iterations, whereas (18)
would require iterations even in this simple case.

The local likelihood procedure can also be viewed as an empirical method of maximizing
El(n(X),Y). Instead of differentiating this expression (as above), we write El(n(X),Y) =
E(E(I(n(X),Y) |X = z)). Hence it is sufficient to maximize E(I(n(X),Y)|X = z) for each
z. The corresponding data recipe can be derived as follows. Consider estimating n(z) at some
point z = z;. An estimate of E(I(n(X),Y)|X =z;) is

E((n(X),Y) X =2)=(1/k) Y l(ﬁ(xj),yj) (23)

JEN;



where k = # of data points in N;. Assuming n(z) ~ fu + Buz for points in N;, (23) is then
maximized over fo; and fy;. The resulting estimate, #(z;) = Bo; + B1z;, is the local likelihood
estimate as defined in Section 4.

The algorithms described here can be used in any likelihood-based regression model.
As a technical point, note that in the exponential family, we linked the additive predictor
1 = 2.1 8;(X;) to the distribution of Y via g = g(u). In some non-exponential family models,
# is a complicated function of the model parameters or may not exist at all., It would then
be desirable to link 1 to some other parameter of the distribution. This is true in the Cox
model (see the next section). In any case, there is no difficulty — however 5 is linked to
the distribution of Y, the likelihood is some function of n and its derivatives are used in the
updating formula.

To summarize so far, maximization of the expected log-likelihood has led to a general
technique for estimating a smooth covariate function: the local scoring procedure. In the case
of the exponential family likelihood this procedure corresponds to smoothing of the adjusted
dependent variable. Standard (linear) maximum likelihood estimation and local likelihood
estimation can also be viewed as as empirical maximizers of expected log-likelihood. Equiva-
lently they can all be viewed as empirical minimizers of the expected Kullback-Leibler distance
between the model and the estimate.

We have not addressed the problem of multiple covariates — this will be done in Section
7.

5.3. Span selection.

In the Gaussian or ordinary additive regression models we use the CVSS to guide us in selecting
spans. CVSS is approximately unbiassed for the Ezpected Prediction Squared Error (PSE),
whereas the RSS is not and would lead us to pick spans of 0. In the exponential family, the
Deviance is the analogue of RSS. It is a sample estimate of the expected Kullback-Leibler
distance between a model and future observations. Just like the RSS it will be biassed for
this quantity. For span selection, one can think of cross-validating the deviance in order to
get an approximately unbiassed estimate for the Kullback-Leibler distance. This, however, is
very expensive due to the non-linear nature of the estimation procedures. In ordinary additive
regression, simple deletion formulae allow one to compute cross validated fits in linear time.
In the case of generalized additive models, however, the entire estimation procedure has to be
repeated n times, and so cross-validation is infeasible.

Instead we use cross-validation to select the span each time we compute a smooth, as
outlined in Section 4.2. This is done in linear time, and since squared error is a first order
approximation to the deviance, it can be thought of as an approximation to the cross-validated

deviance.

10



6. Some Examples.

6.1. The Gaussian Model.

For this model, n = p, so (22) simplifies to n!(z) = Smooth ly], and the local scoring algorithm
reduces to a running lines smooth of y on z.

The local hkehhood procedure also gives the running lines smooth of y on z, since the
local m.l.e is f(z;) = m + ,61,:1:., ﬂo, and ﬂl. being the least squares estimates for the points
in N;. The Gaussian model is applied to a large meteorological data set in Section 11.

6.2. The Logistic Model.

A binomial response model assumes that the proportion of successes Y is such that n(z)Y |z ~

Bin(n(z),p(z)), where Bin(n(z),p(z)) refers to the binomial distribution with parameters
n(z) and p(z). Often the data is binary in which case n(z) = 1. The binomial distribution

is a member of the exponential family with canonical link 9(p(z)) = log % n(z). In

the linear logistic model we assume n(z) = Bo + Biz, and the parameters are estimated by

max1mum likelihood using Fisher’s scoring or equivalently by using adjusted dependent variable

regressxon The smooth extension of this model generalizes the link relation to log % =
n(z). The local scoring step is

y — p%(z)

P - PR

with weights n(z)p°(z)(1 — p°(z)). We now demonstrate the procedure on some real data.

n'(z) = Smooth[n°(z) + (24)

A study conducted between 1958 and 1970 at the University of Chicago’s Billings Hospital
concerned the survival of patients who had undergone surgery for breast cancer (Haberman,
1976). There are 306 observations on four variables.

{ 1 if patient ¢ survived 5 years or longer;
Y= ‘

0 otherwise.
zi1 = age of patient ¢ at time of operation

z;2 = year of operation 1 (minus 1900)

z;3 = number of positive axillary nodes detected in patient 1

Figure 1 shows the response variable plotted against the covariate age. The solid non-linear
function was estimated using the local scoring method. For a single covariate one could simply
average the 0-1 response directly, with iterative weights [A(z:)(1 — p(2;))]~!. This estimates
E(Y |z) = p(z), and is the dashed curve in the figure. It is identical to the function found

~ using the local likelihood method fitting local constants to the logits. - The local likelihood

smooth fitting local straight lines (the more usual approach) is the dotted curve. They are all
very similar, with the main differences occuring in the tails where bias effects play a role. We

11
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Figure 1. Survival of patients who underwent surgery versus age
of the patient. The local scoring function is the solid curve, the local
likelihood function is dotted, the running mean of the y’s is dashed,
and the linear logistic function is the almost straight curve. The size

of the points reflects the number of observations.

will see in the Section 7 that in fitting multiple covariate models, this ‘approach of smoothing
the response variable directly breaks down, whereas the local scoring and local likelihood

techniques generalize easily. We will pursue this example in Section 7.

6.3. The Cox Model.

The propdrtional hazards model of Cox (1972) is an example of a non-exponential family

regression model. This model is used to relate a covariate to a possibly censored survival
time. The data available are of the form (y1,71,61,) ... (yn, Zn, 6n), the survival time y; being
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complete if §; = 1 and censored if §; = 0. We assume there are no ties in the survival times.
The proportional hazards model assumes the hazard relation

At |z) = Ao(t)eP? (25)

The parameter 8 can be estimated without specification of Xo(t) by choosing f to maximize
the partial likelthood

Bz;
€
PL = =_— (26)
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Figure 2. The Stanford Heart Transplant data. The solid curve
is the local scoring function, the dashed line is the local likelihood

function, and the dotted line is the parametric model.

In the above, D is the set of indices of the failures and R; is the risk set just before the
failure at y;.

A more general model is
At |2) = Ao(t)e(®) v (27)

where 1(z) is a smooth function of z. One way to estimate 1(z) would be to apply the local
scoring formula (20). Letting ! equal the log-partial likelihood and C; = {k : 1 € R}, (the risk
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sets containing individual 1), straighforward calculations yield

al
= §; — ¢"(=) (28)
817(9:,) é\_-; ;eR e'l( i)
and
1
= (=) + etn(z) . (29)
a"(’ ) :s% Yjer, e"(”) I:EZC Yier, "))

Starting with say n(z) = Sz, smooths are applied to these quantities, as in (20), and the
process is iterated.

The local likelihood technique can also be applied to the Cox model — this is described
in Tibshirani (1984). We won’t give details here. Instead, we’ll 1llustrate the two estimation
techniques with a real data example.

Miller and Halpern (1983) provide a number of analyses of the Stanford heart transplant
data. The data consist of time to failure (months) and two covariates, age (years) and T5
mismatch score. Here we will consider only the age variable.

Figure 2 shows the smooth obtained by local scoring (solid line) and local likelihood
(broken line). Also shown is the fit obtained by inserting a linear and quadratic term for age
(dotted line). The smooths are very similar and both show a marked non-linear effect. Table
1 summarizes the results of the smooth procedures as well as a standard (linear) Cox model.

Table 1. Stanford Heart Transplant Data

Analysis of Age

Model ' -2 Log Likelihood dof
Null 902.40 0
Linear 894.82 1
Linear + Quadratic 886.24 2
Local Likelihood (span .5) 884.65 2.95
Local Scoring (span .5) 884.66 2.95

The column labelled “dof” means degrees of freedom — this is explained in section 10.
The smooths suggest that the log relative risk stays about constant up to age 45, then rises
sharply. The quadratic model forces a parametric shape on the function, and mlsleadmgly
~ suggests that the relative risk drops then rises. The data set is analysed more thoroughly in
Tibshirani (1984).
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7. Multiple Covariates.

When we have p covariates, represented by the vector X = (X1,X2,...X,), a general model
specifies E(Y |X = z) = u and g(u) = n(z) where 5 is a function of p variables. We will first
discuss the Gaussian case, and show why it is necessary to restrict attention to an additive

model. ‘

We assume
Y=n(X)+e¢ (30)

where 1(z) = E(Y |X = z), Var(Y |z) = 0%, and the errors ¢ are independent of X. The
goal is to estimate n(z). If we use the least squares criterion E(Y — 5(X))Z, the best choice
for n(z) is E(Y |X = z). In the case of a single covariate, we estimated E(Y|X=z)bya
scatterplot smooth, which in its crudest form is the average of those yi in the sample for which
z; is close to z.

We could think of doing the same thing for multiple covariates: average the y; for which
z; is close to z. However, it is well known that smoothers break down in higher dimensions
(Friedman and Stuetzle, 1981); the curse of dimensionality takes its toll. The variance of
an estimate depends on the number of points in the neighbourhood. However, you have to
look further for near neighbours in high dimensions, and consequently the estimate is no
longer local and can be severely biassed. This is the chief motivation for the additive model,
n(z) = so+ Zf;:l 8;(z;). Each function is estimated by smoothing on a single co-ordinate; we
can thus include sufficient points in the neighbourhoods to keep the variance of the estimates
down and yet remain local in each co-ordinate. Of course, the additive model itself may be a
biassed estimate of the true regression surface, but hopefully this bias is much lower than that
produced by high dimensional smoothers. The additive model is an obvious generalization
of the standard linear model, and it allows easier interpretations of the contributions of each

variable. In practice a mixture of the two will often be used:
q p
n(z) =so+ Y _si(z;)+ > Bjz;. (31)
i=1 J=q+1
In later sections we will discuss other models more general than the additive model.

7.1. Estimation — The Additive regression model.

- We now turn to the estimation of so,s1(),..., 8,(-) in the additive regression model

E(Y |2) =80+ ) s;(z;), (32)

j=1

where 5o is a constant and Es;(X;) =0V j.
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In order to motivate the algorithm, suppose the model Y = sg + E, 15i(z;) + €is in
- fact correct, and assume we know 8¢, 51(-), ..., 8;-1(-), 854+1('),...,8p(:). If we define the partla.l
residual:
Ri=Y —s0— ) sx(X),
k#3

then E(R;|z;) = 8;j(z;) and minimizes E(Y — 50— Y 5—18:(Xk))?. Of course we don’t know
the sx(-)’s, but this provides a way for estimating each §;(-) given estimates 3;(+), 1 # ;. The
resulting iterative procedure is known as the backfitting algorithm (Friedman and Stuetzle,
1981):

Backfitting algorithm
Initialization: so = E(Y), sj=s=...=s0=0,m=0.

Iterate: m— m+1
for 7 =1 to p do:

Ri=Y -8 —37_ 1 st (Xe) — Z,’;=i+1 sPH(Xy).
87"(z;) = E(R; I:c,-).
Until: RSS = E(Y — 50~ 3°F_; s7(X;))? fails to decrease.

In the above s7* denotes the estimate of s; at the mth iteration. Notice that by effectively
centering Y at the start, we guarantee that Es;-”(Xj) = 0 at every stage. It is clear that
RSS does not increase at any step of the algorithm, and therefore converges. Breiman and
Friedman (1982, Theorem 5.19) show in the more general context of the ACE (Alternating
Conditional Expectation) algorithm that the solution 5 s5°(z;) is unique and is therefore the
best additive approximation to E(y |z). This does not mean that the individual functions
are unique, since dependence amongst the covariates can lead to more than one representation
for the same fitted surface. These results do not depend on the validity of either the additive
model for E(Y |z) or the additive error assumption as in (30) .-

If we return to the world of finite samples, we replace the conditional expectations in the
backfitting algorithm by their estimates, the scatterplot smooths. Breiman and Friedman have
proved:

e For a restrictive (impractical) class of smoothers, the algorithm converges,

¢ For a less restrictive class, the procedure is mean square consistent in a special sense.
Suppose that the mth iteration estimate of s; is 87, where the hat implies it is a function
of the sample size n. Let s7* be the estimate of s; at the mth iteration of the algorithm
applied to the dlstnbutxons Then E(S7'(X) - s""(X))2 — 0 as n — oo.

A special case arises if we use the least squares regression & + b:rj to estimate E(- |z;) at

every stage of the algorithm. We can once again invoke the Breiman and Friedman results for
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this projection operator, which show that the algorithm converges to the usual least squares
estimate of the multiple regression of Y on z. This is true for both the usual data estimate or
the estimate in distribution space as in Section 5. We give an elementary proof of this fact in
Appendix A.

Although these results are encouraging, much work is yet to be done to investigate the
properties of additive models. In multiple regression we need to worry about collinearity of
covariates when interpreting regression coefficients; perhaps cocurvity has even worse impli-
cations when trying to interpret the individual functions in additive models. This would call
for non-parametric analogues of linear principal components analysis — a standard device for
determining lower dimensional linear manifolds in the data. Some work in this direction has
been done (Hastie, 1983b, 1984b, Young et al., 1978).

If the purpose of our analysis is prediction, these problems are less important. We proceed
in an exploratory spirit, and hopefully a sound bed of theory will develop around these as yet
unanswered questions.

7.2. Backfitting in the Local Scoring Algorithm.

For multiple covariates the Local Scoring update (19) is given by

al
o
n'(z)= E [n°(2) - — 22— |2 (33)
Lo 12]
and in exponential family case (21) is
1) = B 1) + (V-0 2 ]
Aud (34)

where g(u°) = 5° and Z is the adjusted dependent variable. For the reasons described in the
previous section, we will restrict attention to an additive model:

n(2) =so+ ) s;(zy)
=1

We see that (34) is of the same form as equation (32) , with Z playing the role of ¥. Thus to
estimate the s;’s, we fit an additive regression model to Z, treating it as the response variable

Y in (32) . The sum of the fitted functions is 5° of the next iteration. This is the motivation

for the generalized backfitting algorithm which we give for the exponential family case as in
(34) .
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Generalized backfitting algorithm

Initialization: sp = E(Z), s{=s)=...=62=0, m=0.
Iterate: m — m+1

1) Form the adjusted dependent variable

dn

Z=ng"14(Y - #m—l)a—pm—:p

where 771 = 89 + 328_, 8771(X;) and ™1 = g(u™-1).

2) Form the weights W = (3-:7“_1)2V‘1.

3) Fit an additive model to Z using the backfitting algorithm with weights
W, to get estimated functions s;." and model n™.

Until: D = E Dev(Y,u™) fails to decrease.

Step 3 of the algorithm is simply the additive regression backfitting algorithm with weights.
In Appendix B we show why weights are required even in the distribution version of the
algorithm. To incorporate them, the data is first transformed using the weights, and the
backfitting algorithm is then applied to the transformed data. From the results of the previous’
section, we see that the inner loop converges. In particular, if each smooth was replaced by
the simple regression on the corresponding covariate (for data or distributions), the backfitting
algorithm converges to the usual (weighted) multiple regression. This shows that in this case,
the algorithm is identical to the usual GLM estimation procedure using Fisher scoring as in
(9) and (10). Once again the data analogue of the algorithm replaces weighted conditional
expectations by weighted smooths.

The backfitting idea is also used in the local likelihood estimation procedure to incor-
porate multiple covariates. To estimate a new 8;, or adjust s; for other s; in the model,
s; 1s re-estimated holding all others fixed. The algorithm cycles through the functions until
convergence. The details can be found in Tibshirani (1984).

7.3. The breast cancer example continued.

We continue our analysis of the breast cancer data using all 3 covariates. The model is now
log Hf’% = 89+ Z?=1 8j(z;). This is preferable to modelling p(X) by an additive sum, since
we would have to check that the estimated probabilities are positive and add to 1; the logit
transform allows our estimates to be unrestricted. There are other reasons for using the logit
transform; on the logit scale prior probabilities appear only as an additive constant (McCullagh
and Nelder, 1983). This is useful in biomedical problems where there is often some established
population risk, and the problem is to see what factors modify this risk for the sample under
study.
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Table 2 summarizes the various models fitted. The column labelled dof refers to the

approximate degrees of freedom or number of parameters of the model. The derivation of these

~ quantities is outlined in Section 10. Auto in the column labelled spans indicates that each time

a smooth was computed, the span was selected by cross-validation. The entry D? refers to the
percentage of deviance explained, and is in direct analogy to the more familiar R? in regression.
Figures 3, 4, and 5 show the estimated functions for our model with deviance 308.22 and dof
= 8.8.

Landwehr et al (1984) analysed this data set and in particular considered partial residual
plots in order to identify the fundamental form in which terms should appear. Their final
model was

logit p(z) = fo + 2181 + 382 + 2383 + 2284 + 712205 + (log(1 + z3))Bs (35)

with a deviance of 302.3 on 299 dof. We fit this model using GLIM, and then using the
backfitting procedure with linear fits for the transformed variables. As expected, the results
agreed up to 4 significant figures, which provides an empirical proof of the result proved in
Appendix A. This model is labelled parametric in the table. We have superimposed their
parametnc model terms in the ﬁgures and note that the functions are very similar. If z}bis
the estimated linear model, and p the corresponding probability estimate, the partial residual
for variable 5 and observation 1 is defined by

Pa

pl(l_p‘

Landwehr et al. show that if the true model is logit p(z) = Bo + E#J Brzk + s;(z;), then

E[r (X ) | X; = a] ~ s;(a). They then use the smooth of the partial residuals to suggest the
functional form. This result breaks down if the other terms are not linear (Hastie, 1984a and
Gong, 1984). One can see from the previous section that smoothing the partial residual corre-

r(zi;) = bjzi; + (36)

sponds to the first step of the generalized backfitting procedure in the local scoring algorithm,
if our starting guess is the linear model. The backfitting procedure continues, however, by

simultaneously estimating and adjusting non-parametric functions for all the covariates.

8. Comparison of Local Scoring to Local Likelihood Estima-
tion.

In a number of examples that we have tried, the Local Scoring and Local Likelihood procedures
give very similar results. This is not surprising in light of the discussion of Section 5, where
both techniques are viewed as empirical estimates of E (log L). The difference seems to be in

computational speed: local scoring is O(n) while local likelihood, if the span increases like n°,

is O(n‘+1) For large data sets, the local scoring procedure is considerably faster. This leads us
to ask: will the two procedures always give similar estimates? Artificially, they could be made
very different. The reason for this is as follows. For a single covariate, the local likelihood
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Table 2. The Analysis of Deviance (AN ODEV) table for the breast
cancer data.

Model Spans dof Deviance D?
Constant 1 353.67
zy, T2 & z3 all linear 4 328.75 .07
T3, 23 & z3 all .5 8.8 307.89 .13
zy, 22 & z3 auto 8.0 308.22 .13
zz & 23 auto 5.9 317.66 .10
z; & z3 auto 5.0 312.68 12
z & 22 auto 4.1 346.71 .02
Parametric 7 302.30 .15
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procedure is completely local; that is if z; is not in the neighbourhood for estimating n(z:),
then (z;,y;) has absolutely no effect on the estimate 7(z;). This is not true in the local
scoring procedure, for as the smooth operation is iterated, the estimates (z;) enter into the
computation of #j(z;). Thus sending y; off to +o0o would have a large effect on the estimate of
7(z;) in the smooth updating procedure, but no effect in the local likelihood procedure.

Given the theoretical basis of Section 5, it seems eminently reasonable that the two
procedures be asymptotically equivalent. We sketch a proof of this fact in Appendix C.

For finite samples we can describe operationally the difference as follows, using logistic
regression as an example. Suppose we start with p°(z;) = §, the overall proportion of 1’s.
Then the first iteration for both procedures is identical:

¢ Local scoring fits the weighted least squares regression of z; = logit p® + W against
z; for j € N; to obtain the estimate n!(z;); this is the local linear smoother operation in
this neighbourhood.

¢ Local likelihood does exactly the same operation in computing the MLE in the neigh-
bourhood, since this is the first step in the adjusted variable regression procedure used
to compute the MLE.

The second iterations are very similar:

.l . . .
e Local scoring regresses z; = n 1z;) + Wlfj—(f—_(p—z{-();—.ﬁ against z; for 7 € N; to obtain the
J 7

estimate n%(z;).

e Local likelihood, however, regresses z,- = n}(z;) +5 y’ (f ;’()z against z,, where n}(z;)
refers to the extrapolated value of 5! at z; derlved from the linear estimate n!(z;) =

ﬂOt + ﬂlz zj.

If the function is fairly linear in the neighbourhood then these two steps will yield similar
estimates. For a given point z;, the local scoring algorithm uses its latest estimate of p(z;)
for every neighbourhood in which z; appears. The local likelihood procedure, however, uses a
linear approximation (on the 5 scale) for p(z;) based on its estimate p(z;) when z; is in N;.

9. Asymptotic Properties.

Since the local scoring and local likelihood procedures use local maximum likelihood estimates,
we would expect them to have reasonable asymptotic properties. Tibshirani (1984) extends
the work of McCullagh (1983) to establish such properties for local likelihood estimates in
the exponential family. Consider estimation of a single smooth n(-) at a fixed point zy. Let
kn be the number of points in the neighbourhood Ng used to estimate n(zg). Assume that

kn — oo, but the neighbourhood shrinks in such a way that maxy; jenn} |2 — z;] = o(k_l/z)
Then under smoothness constraints on 1(+), regularity conditions on the distribution of ¥ and
boundedness on the covariate values, Tibshirani shows that the local likelihood estimate fi(zo)
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1s consistent for the true value n{zo), and has the efficiency of a maximum likelihood estimator
based on ky, (instead of n) observations. The proofs of these results rest on the fact that the
local likelihood estimate of E(log L |zo) (see Section 5) is consistent. The results then follow
by Taylor series expansions.

Similar results should be obtainable for the local scoring algorithm. They could be de-
rived from the asymptotic equivalence with Local Likelihood estimation, or directly as follows.
Consider the stable point of the update step (20). Assuming the neighbourhoods behave as
above, Smooth [%(z)] & n%(z) for large n, so at convergence Smooth[—g] ~ 0. Under condi-
tions such that Smooth (-] at z; is consistent for E (- |zo), the asymptotic properties of i{zo)
will follow from standard Taylor series arguments.

10. Deviance and Degrees of Freedom.

In generalized linear models, the goodness of fit of an estimate jt is measured by the deviance.
Wald’s theorem tell us that, given two nested linear models and the hypothesis that the smaller
model is correct, the deviance decrease in fitting the larger model is asymptotically o2 sz—pu
where p; and p; are the ranks of the two linear spaces. That i is, the number of parameters fit

give the number of degrees of freedom of the corresponding deviance decrease.

This leads us to ask similar questions for the smooth estimates described in this paper.
We will restrict our discussion to the exponential family case, and also to the case of known
variance 02 = 1. The question of interest is: how many “parameters” does a smooth employ?
This will depend on the span. With a span of 2.0 (i.e. every neighbourhood contains all the
data points), 2 parameters are used. With a span of O (i.e. 1 point per neighbourhood), n
independent parameters are used. Thus for the usual spans (.3 to .7), the number of parameters
should_\.;be somewhere between 2 and n.

For the local likelihood procedure, Tibshirani(1984) provides a definition of “number of
parameters” or “degrees of freedom” and an approximate method for determining it. This
follows work by Cleveland (1979) on degrees of freedom for scatterplot smoothers.

Consider first a multiple linear regression model with variance equal to 1. Let §; and §,
be the fitted values for two nested models, and assume that the sub-model, say model 1, is
correct. Then the decrease in residual sum of squares has expected value p; — p;. One way
to derive this is to write §) = Hyy and §» = Hsy, where H; and H; are the corresponding
hat matrices. Then a simple calculation shows that the expected decrease in residual sum of
squares is just trace(Hs) — trace(H1) = ps — p1.

For a running lines smoother, an analogous result can be derived. Consider a single
covariate z. First, we note that the output of the smoother can be written as 9 = Sy where
S is a “smoother matrix”. Now consider two fit vectors 1 and §J; obtained by smoothing y
~ on z with different spans. By analogy to the multiple linear regression case, we can define the
difference in degrees of freedom of the fits by the expected value of RSS (v,92) — RSS(y,11)-
In the regression set-up, this expected value was computed under the assumption that the
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smaller model was correct. Here we make the analogous assumption that Ef; =~ Efp., i.e.
that the two fits are about the same on the average. Then under this assumption, it is easy
to show that E(RSS(y,f2) — RSS(y,91)) = trace(S;) — trace(S;). Hence we can think of
trace(S) as the number of degrees of freedom of the smoother based on S.

Further, the same result is approximately true for any local likelihood fit in the exponential
family. Consider-two fits ji; and ji; based on a covariate vector z and spans 1 and l;. Then
the difference in degrees of freedom of the two smooths is defined to be E( Dev(f,y) -
Dev(ji2,y)) under the assumption that Egy ~ Ep,. Let S; and S; be the smoother matrices,
based on z that produce running lines smooths of spans l; and [/, respectively. Then it can be
shown that E( Dev(ji1,y) — Dev(ji;,y)) » trace(S;) — trace(S)).

Given a local likelihood fit, we easily work out trace(S) and use it to determine the
significance of the smooth. As a example, for 200 equally spaced X values and a span of
.5, trace(S) is about 3.6. Hence the smooth uses rough]y 3.6 parameters. We say “roughly”
because the distribution of this decrease is not x2, however, but is more spread out. The
trace(S) formula should only be used as a rule of thumb.

Since the local scoring procedure produces estimates similar to local likelihood estimates,
the same result should approximately be true for it as well. Due to the complex nature of the
estimation procedure, however, we have been unable to verify this analytically. Instead, we

describe a small simulation study designed to check the result numerically.

10.1. Degrees of Freedom Simulations.

Table 3. Results of Degrees of Freedom Simulation. Entries in
Lines (2)—(7) are mean(variance) of deviance decrease. LS and LL
mean local scoring and local likelihood respectively.

Span
Source - .3 4 .5 .6 7
(1) Trace(S)-1 4.09 3.82 2.65 2.34 2.16
(2) Scatterplot Smooth(y normal) 4.14(10.00) 8.39(7.75) 2.61(6.03) 2.31(5.08) 2.09(4.32)
(3) Scatterplot Smooth(y uniform) v 4.19(10.06) 3.46(8.50) 2.77(6.52) 2.41(5.79) 2.21(4.99)
(4) Logistic Model (LS) (constant vs smooth)  4.35(13.86) 3.39(11.78) 2.67(9.16) 2.35(8.02) 2.25(6.50)
(5) Logistic Model (LS) (linear vs smooth) 3.31(9.54) 2.36(8.27) 1.61(5.12) 1.33(4.12) 1.21(3.66)
(6) Logistic Model (LL) (constant vs smooth)  4.34(13.47) 3.40(11.62) 2.72(9.12) 2.28(7.51) 2.17(6.28)
(7) Logistic Model {LL) (linear vs smooth) 3.29(11.71) 2.25(8.25) 1.63(6.21) 1.29(4.58) 1.12(2.89)

Table 3 shows the results of a modest simulation study designed to check the accuracy of

the formula E(D(y,{1) — D(y, i)2)) = trace(Sz) - trace(S1). The numbers in the table were
obtained as follows. 100 z values were generated from N (0,1) and fixed for the entire table.
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Given these z values, we constructed the running lines smoother matrices for the indicated
spans, and the trace of each matrix (minus 1) is shown in line (1).

Consider for example the entry 4.09 in the top left hand corner. According to the discus-
sion of the preceding section, this should be the expected decrease in deviance due to fitting a
local likelihood or scoring model with that span .3 versus a model with only a constant.

To obtain line (2), we generated 100 y;’s from a N(0,1) distribution and computed
RSS(y,§1) — RSS(y,9), 9 being the fit from a scatterplot smoother (# = Py) with span
as shown. Line(2) shows the mean and variance from 500 such repetitions of this process.

Line (3) was obtained in same way as line (2), except that the y;’s were generated from
uniform (—+/3,+/3), the range chosen so that Var(y) = 1.

To obtain line(4), we generated 100 y;’s from binomial(1,1/2) and fit a local scoring
logistic model with spans of .3 to .7. The numbers show the mean and variance of D(y, gl) —
D(y, ) over 500 repetitions. '

Line (5) was generated in a similar fashion as line (4), showing instead the mean and
variance of D(y, 1) — D(y,#), il being the linear logistic fit, with y; generated from a linear
logistic model, P(y; = 1 |z) = e22/(1 + ¢2%).

Lines (6) and (7) are the same as (4) and (5) except that the smooths were obtained by
local likelihood estimation.

Note that for all the models, a span of 2.0 gives either exactly or asymptotically a mean
value of 1 (by Wald’s theorem), and trace(S) — 1 is also equal to 1.

The results give fairly strong support to the approximation E(D(y,i1) — D(y,12)) =
trace(Sz) — trace(Sy). Lines (2) and (3) agree well with (1), not surprising since the approx-
1matlon is exact for scatterplot smoothers. Line (4) also is in good agreement, with a small
upward bias for smaller spans. Line (5) should be 1 less than line (1), (since the global linear
fit uses 2 degrees of freedom) and the results indicate that. As we expected, the local likelihood
results are very similar to the local scoring numbers.

The variance results are a little unsettling. The variance to mean ratio is often greater

than 2 (the ratio for a chi-square variate), especially for the non-Gaussian models.

We conclude from these simulations that the approximation E(D(y,1) — D(y,92)) =
trace(S;) — trace(S)) is satisfactory as a rough rule of thumb, for the Gaussian and logistic
models. We do note, however, that the distribution of this decrease is more spread out than
a chi-square variate with the corresponding degrees of freedom, so that tests based on the

- percentile points will be too liberal.

The numbers reported here for local likelihood estimation can also be found in Tibshi-

rani(1984). In that study, the Cox model was also included in the simulation, and the trace

formula was found to be biassed downward. Thus to accurately assess the significance of a
Cox smooth in real exa.mples the mean decrease must be found by simulation. This was done
for the example of Section 6.
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11. Example: Ozone Concentration data.

In this section, we apply the local scoring procedure to some data on atmospheric ozone
concentration, given in Breiman and Friedman (1982). The data consist of 330 observations
on 10 variables:

Response:

UPO3: Upland Ozone Concentration (ppm)

Predictors:

VDHT: Vandenburg 500 millibar height (m)
HMDT: Humidity (percent)

IBTP: inversion Base Temperature (F°)

SBTP: Sandburg Air Force Base Temperature (C°)
IBHT Inversion Base Height (feet)

WDSP: Wind Speed (mph)

DGPG: Daggot Pressure Gradient (mmhg)

VSTY: Visibility (miles)

DOYR: Day of Year

The objective is to study the effect of various meterological variables on atmospheric
ozone concentration. Following Breiman and Friedman, we considered all the covariates except
DOYR initially, then examined the effect of adding DOYR to our model.

We used the Gaussian additive model to explore these data. A summary of the models is
given in Table 4.

Table 4. The ANOVA table for the Ozone Concentration Data.

Model . Spans dof Deviance (RSS) R?
Constant 1 21115.41
First 8 predictors all inear 9 6539.00 .69
First 8 predictors all .5 22 .5 5176.56 .75
All 9 predictors auto 21.8 4292.28 .80
.SBTP, IBTH, DGPG, VSTY auto 11.0 5431.93 74
SBTP, IBTH, DGPG, VSTY, auto 12 4 4736.60 .78
DOYR .
Semi-parametric 11.2 4848.99 77
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Figure 10. The estimated function for Day of the Year.

As a pre-screening step, we examined the effect of dropping each of the 8 covariates from
the full model. For this phase, a fixed span of .5 was used. The full model had a residual sum
of squares of 5176.56 on 22.5 degrees of freedom. Based on this, the estimate of residual error
is 16.85. This compares to a standard multiple linear regression fit having a residual sum of
squares of 6539.00 on 9 degrees of freedom. Using F-values as a rough guide, the variables
SBTP, IBHT, DGPG and VSTY were seen to cause a significant increase in the residual sum
of squares, and the remaining predictors were dropped.

Using these selected predictors, an additive model was fit, this time allowing the procedure
to choose the optimal spans by cross-validation. The resultant model had a residual sum of
squares of 5481.93 on 8.8 degrees of freedom, and is not significantly worse than the full model.
We then added the variable DOYR to the model, and it was highly significant, decreasing the
residual sum of squares by over 700, with 12.4-11.0=1.4 additional degrees of freedom. Note
that instead of using DOYR’s degrees of freedom (which was 1.9), we use the difference in
degrees of freedom in the two models. The reason is that when a variable is added to a model,
the spans chosen for other variables can change and hence their degrees of freedom change
also.

~— Dropping any of these variables caused a large increase in the residual sum of squares.
The fit of the full model (all 9 predictors) is also shown in Table 4.

At this point we mention a complexity caused by the varying spans. Although it seems
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that the 4 variable model is ‘nested” within the 8 variable model, there is no guarantee that
its residual sum of squares will be higher. This is because the spans aren’t chosen to minimize
the overall residual sum of squares. It is quite possible that in dropping a useless predictor,
the residual sum of squares will decrease! This is not a practical problem, but it would create
some unusual twists in a testing theory for additive models.

Figures 6 — 10 show the estimated smooths for the 5 predictors. All the variables seem
to display non-linear effects. To simplify the model, we forced in a parametric form for each
of the variables, one at a time. A linear term was tried for SBTP and VSTY, and quadratic
terms for IBHT, DGPG and DOYR. Both linear terms proved to be inadequate, especially for
SBTP. Its linear term caused the residual sum of squares to increase to 5214.03, with about
1 less degree of freedom. The quadratic terms were all satisfactory. Thus we have our final
model:

UPO3 = constant + s1(S BT P)+a1IBHT + a3 IBHT? + b; DG PG + b,(DG PG)?

37
+83(VSTY) + ¢1 DOY R + ¢3( DOY R)? (57)

with a residual sum of squares of 4858.99 on 11.2 degrees of freedom. The RSS of this model
is 112 higher than the RSS for the nonparametric model, but for descriptive purposes it is
adequate.

Breiman and Friedman fit an ACE (Alternating Conditional Expectation) model to these
data. The ACE model is the same as the additive Gaussian model, except that they also
estimate a tranformation for the response. The final model obtained by Breiman and Friedman,
using a forward stepwise ACE model contains the same predictors as the above model. In
addition, the estimated transformation obtained from ACE was only slightly non-linear, and
hence the estimated smooths from ACE are very similar to those in Figures 6 — 10.

We discuss an alternative to response variable transformation and apply to these data in
Section 12.

12. Transformations of the Additive Model.

For exponential families, the model we have discussed up to now has the form g(u) = n =
2% s;(X;), where g() is the (known) link function. A more general model is
9(u) = f(n) = f(22§ s;(X;)), where f(-) is a unspecified smooth function. As we did for the
8;(+)’s, we will show how to estimate f(-) non-parametrically. For ease of interpretation, we
will restrict f(-) to be monotone. Note that since f(-) is arbritrary, so is f ~1(g(-)), and we
could write this as g*(n). Hence non-parametric estimation of f(-) provides non-parametric
estimation of the link function. In some applications, we could set g(+) equal to the identity
function; in others, we might want to start with g(+) equal to the natural link for the problem,
and see if the estimated f(-) is close to the identity function.

Estimation of f(-} can be achieved through a modification of the local scoring algorithm.
The new procedure consists of two alternating loops, one each for the estimation of the s;(-)’s
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and f(-). To estimate s(-) with f(-) fixed, we use formula (20) noting that the derivatives now
involve the derivatives of f(-). In the generalized linear model case this reduces to

7'2) = Smootln®(e) + (u - u) 2Ly (39

with weights W1 = [(%ﬁ))z/f'(no)z]Vo. To estimate f(-) with 5(-) fixed, let b = s(z), and
the update is

dl
f1(8) = Smooth |°(b) — I (39)
Smooth[m
In the generalized linear models case, this is
d
1) = Smooth (1) + (v - u) ) (0

with weights W1 = (dTy‘(Iig_))zVo. The two loops, estimating the s;(-)’s and estimating f (-), are
alternated until convergence. ’

“For non-exponential family models, the link relation would be of the form g(8) = f(n),
where 6 is some parameter of the likelihood. For example, one generalization of the Cox model
would be A(t |z) = /\o(t)ef(z:‘: si(2)).

The algorithm requires two special subroutines. First, the derivatives of f(-) are needed
for the first step— Jerome Friedman kindly supplied us with his procedure for estimating the
derivatives of a smooth. Secondly, the estimate of f(-) must be monotone. The monotone
smoothing technique described in Friedman and Tibshirani (1984) was used for this purpose.

We tried this procedure on two examples. The first data set concerns the strength of
yarné;:;nd is taken from Box and Cox (1964). It consists 6f a 3x 3 x 3 experiment, the response
being number of cycles to failure and three covariates: length of test specimen, amplitude of
loading cycle and load. Box and Cox fit linear terms to the covariates and found that the log
transformation was ideal for the response. Note that if Y has mean # and variance V' (u), then
log Y has mean about log u and variance about V(u)/u?. Hence if the log transformation is
appropriate (both for additivity of effects and variance stabilization) then a generalized linear
model with = log(p) and V (u) = u? should also be appropriate.

To test our procedure, then, we set g(u) = u and V(1) = u?, and a linear term was fit for
each covariate. The estimated f(-) is shown in figure 11, along with the exponential function.
The agreement is very good. Furthermore, the residual sum of squares of the final model was
very close to that obtained by Box and Cox for the log transformation.

As a second example, the link estimation procedure was applied to the ozone concentration

~data. Using the covariates of Table 4 and the spans chosen there, the estimated f(-) is shown

in figure 12. The transformation has positive curvature, indicating that mild transformation
of the additive predictor may improve the fit. This is in qualitative agreement with Breiman
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Figure 11. The solid function is the estimated transformation ()
found for the Box-Cox data. The dashed function is the exponential

suggested by the log-transform of the response variable y.

and Friedman’s analysis: using a response variable transformation method (see ACE, next

section), they find that a transformation with slightly negative curvature is appropriate.

Despite these encouraging results, the link estimation procedure is still experimental. The
reason is that the iterations can be unstable if the derivatives of f (-) get too close to zero. We
are presently studying this problem.

13. Relationship to Other Methods.

As we have seen, the Local Scoring technique generalizes standard (linear) likelihood methods.
When each neighbourhood contains all the data points, Local Scoring corresponds exactly
to standard (linear) maximum likelihood estimation. For smaller spans, the Local Scoring
procedure can detect curvature in the covariate functions. In the class of GLM'’s, the linear
predictor is generalized to a sum of smooth functions. Note also that this technique provides
non-parametric “quasi-likelihood” estimation. McCullagh (1983) notes that in the exponential

family, the score equation involves only the mean and variance of Y. This if one is only willing
to assume a mean-variance relationship for Y, it might be reasonable to base the estimation
procedure on the corresponding exponential family score equation. McCullagh calls this “quasi-
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Figure 12. The estimated transformation for the Ozone Concen-

tration Data of Section 11.

likelihood” estimation. Since local scoring (and local likelihood) depend only on the mean and

variance as well, they can be thought of as extensions of quasi-likelihood modelling.

*“The models described in this paper are also related (when the error distribution is Gaus-
sian) to a number of non-parametric regression models that have been recently suggested.

Friedman and Stuetzle (1981) introduced the projection pursuit regression model:
P
Y = Z sj(a;X;) + error (41)
1

The directions a; are found by a numerical search, while the 8;(-)'s are estimated by smoothers.
Friedman and Stuetzle call the special case of co-ordinate directions, i.e. the model

P
Y = E 8;(X;) + error (42)
1

“the “projection selection” model. This corresponds to the additive Gaussian model described

here, and the algorithm for estimating the smooths is identical.

The ACE (Alternating Conditional Expectation) model generalizes the additive Gaussian
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model by estimating a transformation of the response:
?
oY) = Zai(X,-) + error (43)
1
Related to this is the PACE (Predictive ACE) model of Friedman and Owen (1984)

P
Y= f(z: 8(X;)) + error (44)

This model transforms the mean of ¥ instead of Y. The PACE model is a special case of the
the additive model with link estimation desribed in the previous section: it corresponds to the
identity link (g = ) and Gaussian likelihood.

Finally, we note that the link estimation procedure of Section 12 can be used to further
generalize the model to allow covariate projections (as in PPR). The model would be

P
o(w) =D _ ¢;(a}z;) (45)
1

A single term ¢(a'z) could be estimated by setting f(-) = ¢(-) and forcing #;(z;) to be linear
(= a;z;). Additional terms could be added in a forward stepwise manner.

Software

A fortran program that computes local scoring estimates for exponential family models is
available from either author.
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Appendix A. The backfitting algorithm using linear fits.

In this appendix we prove that the fit vector from the backfitting algorithm converges to the

least squares answer if global linear fits are used to estimate E(- |z). Let V be the subspace

spanned by z;, Z, . .., Z, with orthogonal complement V+; here z; is a n vector of observations

on variable j. Let P; denote linear projections onto z;. For any vector a let & be its projection

onto V and a' = @ — &. The residual after m cycles of the backfitting algorithm through the

p predictors is given by

r™=C™y
where (46)

C = (I -— Pp)(I— Pp_l PN (I - Pl)y.

It is immediate that ™ = C™§) + y-L.

Theorem 1

]|C”‘Q]|—> 0,and thus r™ — y+.

Proof. (Stuetzle, 1983)

For any vector a we use the natural norm for matrices to get

ICall < 1T = Pl |(1 = Pp-1) ... (I = Pr)al]

<= Ppe1)...(I- Pal (47)

< il

since ||I — P;|| =1V 5. Similarly

But then a € z7 ....

[Call = |lal
= I(I - Pr)a]| = |la]|
= (I-Pla=a
=>acz;

and finally @ € z;. Thus ||Ca|| = ||ja]j => a € VL. Soif a € V then

|Call < ||a]
<@ -¢)lafl.
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where 0 < ¢ < 1. Also Ca €V for a € V. Hence

[C™a|l < (1-¢)[[C™a]|

<@ -7 |l

This is true for ar-ly a €V. Since § € V, the theorem is proved.

Appendix B. The use of weights in the backfitting procedure.

The function f(z) that minimizes the weighted least squares problem Ew(X)(Y — f (X))%is
simply E(Y |z), and the weights play no role. When we estimate this quantity using global
or local straight line fits, however, the Gauss-Markov theorem tells us that we can estimate
the parameters more efficiently by using weights.

If we wish to minimize
Ew(X)(Y - ) s(X;))? (48)

and, as in the backfitting procedure, sy, ... ,8p—1 are known, the situation is different. We
write (48) as

Ex, Ex,, . x,¥|x, (Bo(Y,X) = 8,(X,))? | 2] (49)

where R, (Y, X) =Y ~ 37, s;(X;). Minimizing this function w.r.t. sp yields

o = EROR(Y,X) |2,]

P = T E[w(X) o] (50)

Thus even in the distribution case, we need to use weights. It is clear that the weights play no

role in the distribution case if they depend only on the variable on which we are conditioning.

In the generalized additive model situation, each iteration of the scoring procedure cor-
responds to a weighted least squares problem, with weights as specified in the algorithm. The
weights, of course, usually depend on the unknown model and so the latest estimates are
substituted. k

Appendix C. Asymptotic equivalence of Local Scoring and Lo-
cal Likelihood.

In this appendix, we sketch a proof that in the exponential family, the local likelihood estimate

at a single X value asymptotically satisfies the local scoring update equation (19).

We assume that the Y;’s are independent with density fy (y;6,¢) = exp{[yf—b(0)]/a(4)+
c(y,¢)}. We have EY = V'(8) = p, VarY = b"(8) = V(u)¢, and u is linked to a a single

38



covariate X by n = s(z) = g(u). Consider estimation of s(-) at a fixed point zg, with a sample
size of k, points in the neighbourhood N3, and assume that k, — oo but

mazy; jenpy |2 ~ z;| = o(k7'/?). (51)

We make the simplifying assumption that the z;’s are equally spaced, hence the local likelihood
estimate in the jth neighbourhood is just #; = g;. The local scoring step is ! = Smooth [n+
(y—n) %%], with weights (%%)2V(u). Assuming that g(u) and b(6) have two bounded derivatives,
we can expand each in a Taylor Series, and using (51) , the local scoring step can be written
as

no — Aveo(n]) + Aveo(y; — p;) +0(1) =0 (52)
where Aveg represents the (unweighted) mean over j € N§. Thus it is sufficient to show that
u; = §; and n; = g(9;) satisfy Aveo(y; — p;) = o(1) and o ~ Aveq(n;) = o(1), respectively.
Assuming that the second moment of Y is well-behaved enough to allow application of the
weak law, each of these follow by standard Taylor series arguments.
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